Geometry-Dependent Electrostatics near Contact Lines
نویسندگان
چکیده
منابع مشابه
Geometry-dependent electrostatics near contact lines.
Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle ...
متن کاملBacterial swimming and oxygen transport near contact lines.
Aerobic bacteria often live in thin fluid layers near solid-air-water contact lines, in which the biology of chemotaxis, metabolism, and cell-cell signaling is intimately connected to the physics of buoyancy, diffusion, and mixing. Using the geometry of a sessile drop, we demonstrate in suspensions of Bacillus subtilis the self-organized generation of a persistent hydrodynamic vortex that traps...
متن کاملInterface profiles near three-phase contact lines in electric fields.
Long-range electrostatic fields deform the surface profile of a conductive liquid in the vicinity of the contact line. We have investigated the equilibrium profiles by balancing electrostatic and capillary forces locally at the liquid vapor interface. Numerical results show that the contact angle at the contact line approaches Young's angle. Simultaneously, the local curvature displays a weak a...
متن کاملContact Geometry
2 Contact manifolds 4 2.1 Contact manifolds and their submanifolds . . . . . . . . . . . . . . 6 2.2 Gray stability and the Moser trick . . . . . . . . . . . . . . . . . . 13 2.3 Contact Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Darboux’s theorem and neighbourhood theorems . . . . . . . . . . 17 2.4.1 Darboux’s theorem . . . . . . . . . . . . . . . . . . . . . . . 17...
متن کاملContact Geometry of Curves
Cartan’s method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2001
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.87.106101